Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks
نویسندگان
چکیده
منابع مشابه
Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.
Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staN...
متن کاملExtracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma Using Simultaneous Nonnegative Matrix Factorization
In this paper we introduce a clustering algorithm capable of simultaneously factorizing two distinct gene expression datasets with the aim of uncovering gene regulatory programs that are common to the two phenotypes. The siNMF algorithm simultaneously searches for two factorizations that share the same gene expression profiles. The two key ingredients of this algorithm are the nonnegativity con...
متن کاملLocal Learning Regularized Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...
متن کاملGene Tree Labeling Using Nonnegative Matrix Factorization on Biomedical Literature
Identifying functional groups of genes is a challenging problem for biological applications. Text mining approaches can be used to build hierarchical clusters or trees from the information in the biological literature. In particular, the nonnegative matrix factorization (NMF) is examined as one approach to label hierarchical trees. A generic labeling algorithm as well as an evaluation technique...
متن کاملAutomated Gene Classification using Nonnegative Matrix Factorization on Biomedical Literature
Understanding functional gene relationships is a challenging problem for biological applications. High-throughput technologies such as DNA microarrays have inundated biologists with a wealth of information, however, processing that information remains problematic. To help with this problem, researchers have begun applying text mining techniques to the biological literature. This work extends pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2016
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1521171113